Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Samuel Nii Odoi Yemofio

University of Cape Coast, Ghana

Title: Investigation of itaconate metabolism in Cupriavidus necator H16

Biography

Biography: Samuel Nii Odoi Yemofio

Abstract

Statement of Problem: Recent challenges of pollution and climate change in our environment stems from the over dependency on fossil fuel through the extraction, processing and exploitation for petrochemicalbased products. This has caused severe havoc to the environment and its natural habitats, leading to deaths and displacements into unfavourable conditions. Researchers in the US Department of Energy (DoE) in 2004 identified itaconate, one of the twelve attractive platform chemicals, as a potential chemical suitable for bio-based industrial products using biological routes. Previous research has also shown that itaconate has the potential to replace petroleum-based products such as petrochemicalbased acrylic and methacrylic acid; and detergents, surface active agents and biosynthesized plastics for industrial applications with bio-based products. This can be achieved through biological or chemical conversions and be subsequently converted into several high-value biobased chemicals and materials from biomass. Research also discovered that itaconate is naturally produced by microorganisms such as Candida sp., Ustilago madis and Aspergillus terreus although many microorganisms have been genetically engineered for the biosynthesis of itaconate. It is therefore necessary for current generation to identify various sustainable and cleaner processes for chemical, fuel and energy production. HPLC was used to estimate the concentration of itaconate consumed. The purpose of this research was to identify the genes involved in itaconate metabolism and abolish its metabolism. Methodology & Theoretical Orientation: To investigate itaconate metabolism on host organism Cupriavidus necator H16, growth of mutants was observed using itaconate as sole carbon source. Findings: Single, double and triple knock-outs of ict genes involved in itaconate conversion to itaconyl-CoA (itaconate-CoA transferase activity) were generated. Growth and itaconate consumption assays were performed establishing that only H16_RS22140 gene is clearly involved in itaconate metabolism. Recommendation: This study revealed that other genes can be involved in itaconate degradation and therefore further research to investigate function of these genes is required.