Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Jin Ho Lee

Hannam University, South Korea

Title: Asymmetrically porous nerve guide conduit with nerve growth factor gradient for effective peripheral nerve regeneration

Biography

Biography: Jin Ho Lee

Abstract

Peripheral nerves function as communication paths between the brain and muscle/organ/skin and injury to these nerves leads to the severe loss of sensory or motor functions. Although the understanding of nerve regeneration and the development of surgical techniques are rapidly growing, sufficient restoration of damaged nerves still remains a big challenge. Recently, artificial nerve guide conduit (NGC) to bridge the gap between severed peripheral nerve stumps has been demonstrated to be a promising strategy for the treatment of damaged nerves. It is well known that the nerve regeneration is mediated by gradients of bioactive molecules including nerve growth factor (NGF; chemotaxis). In this study, the NGF gradient NGC was fabricated by rolling an asymmetrically porous polycaprolactone (PCL)/Pluronic F127 membrane with NGF gradient. The NGF loading amount and NGF release profile along the NGF gradient were investigated. The NGF immobilized on the NGC was continuously release up to 28 days, regardless of the NGF concentration. The nerve regeneration behaviors through the NGF gradient NGC were compared to the NGC with uniform NGF immobilization using a SD rat with a 2 cm long sciatic nerve defect. From the animal study, it was recognized that the NGF gradient NGC shows greater nerve regeneration behavior than the uniform NGF group. Based on our findings, it is suggested that the NGC with asymmetrically porous structure and gradient of NGF concentration can be a simple and effective therapeutic technique to accelerate the reinnervation rate and provide sufficient functional recovery of peripheral nerves.